evan_gcrm (evan_gcrm) wrote,
evan_gcrm
evan_gcrm

Самоорганизующиеся системы классической физики

Оригинал взят у yamaha3



Относительно теории относительности.
Интеллект не спасает мир.
Наука и техника как она есть.
Невзрывающийся песок.


«Согласно этому учению, в природе не существует другой реальности, кроме наших собственных ощущений, и всякое изучение природы является в конечном счете только экономным приспособлением наших мыслей к нашим ощущениям, к которому мы приходим под влиянием борьбы за существование. Разница между физическим и психическим - чисто практическая и условная; единственные элементы мира, это - наши ощущения….»
/Луи де Бройль/

Парадигма современной академической физики построена на философии позитивизма Эрнста Маха, которую некогда называли субъективным идеализмом.

«…системе Маха совершенно чужд самый важный признак всякого естественнонаучного исследования: стремление найти постоянную, не зависящую от смены времен и народов картину мира…».
/Макс Планк/


Со сменой научной парадигмы между современной теоретической физикой и остальным человечеством, включая всемирный инженерный корпус, образовалась пропасть взаимного непонимания.
Мышления инженера и физика лежат как бы в разных плоскостях.
Теории, построенные в новой парадигме, не могут быть переведены, будто на другой язык, в классическую систему понятий, вставлены в рамки ее парадигмы и сделаны знаниями для всех. Для понимания этих теорий нужно иметь соответствующее им мировоззрение, и именно для такого круга единомышленников они и предназначены. Изменилась цель науки, ее назначение, теперь это физика для физиков, замкнутая сама на себя.

О гигантских успехах современной теоретической физики много было сказано самой этой физикой. Как и о несостоятельности классической.

Но оцените теперь исторические факты.

Факты таковы.

Научная революция стала концом того периода (половина 19-го и начало 20-го веков), который называют теперь веком великих научных открытий, т.е. по глобальным объективным данным оказалась регрессивной.
Революционная школа физики, сменившая школу классическую, стала настоящей индустрией науки, превзошла классическую в сотни раз по числу ученых, институтов, публикаций, по оснащению и финансированию. Но по результатам деятельности, по числу и значимости открытий, по влиянию на технологии и уровень жизни так и не смогла догнать классическую - маленькую и бедную.

Век великих открытий она не повторила.

Не стала она и новым фундаментом массовых технологий, не повела технолога в понятный ему микромир, за свои сто лет она создала и ведет сравнительно малое число новых технологий. Атомная энергетика, полупроводниковая и лазерная техника – это не великие открытия и слишком малая для столетия доля в общей картине прогресса.

Даже самый ценный и массовый вклад современной физики в нашу жизнь – транзистор, положивший начало полупроводниковой технике, - можно оценить двояко. Когда еще не было радиостанций, первые радиолюбители слушали «музыку эфира», используя в качестве детектора кристалл пирита и иголку - точечный полупроводниковый диод. От диода до триода прошла половина XX века - две мировые войны, революции, сменились поколения.

И это – гигантский успех?

Классическая парадигма шлифовалась веками и стала, наконец, технологией великих научных открытий и величайшей ценностью, когда-либо принадлежавшей человечеству.
Век великих открытий: законы электромагнетизма, термодинамики, электрон, атомное ядро, кванты излучения, структура физических тел и т.д. и т.п. – это всего лишь закономерный продукт этой технологии.
Как и дальнейшие следствия: все виды транспорта, мировая энергетика, радио и связь, всё множество приборов, машин и механизмов.
Сама же технология всегда более ценна, чем ее продукт, в том числе ценнее ее великих открытий. Накопленное умение изучать природу и делать открытия передавалось в рамках научной школы от поколения к поколению, но было отброшено революцией и утеряно. Классическая школа за свои последние 20 лет сделала по меньшей мере четыре великих открытия: электрон, квант излучений, атомное ядро, строение тел и атомов. Современная индустрия науки должна бы радовать нас целой россыпью еще более великих открытий.

Но где они за последние полвека?

Наблюдаемый сегодня результат - столь же закономерное следствие потери технологии науки.

В нашем мире технологический прогресс идет по законам естественного отбора: новые технологии вытесняют старые и приживаются, только доказав своё преимущество своими результатами.

В физике же новая парадигма вытеснила парадигму великих открытий, еще не сделав ни одного открытия, оперируя лишь словами. Зато она привлекала физиков тем, что избавляла от самой трудной работы: отыскивать и объяснять причины явлений.
Всё то, что трудно объяснить, теперь можно объявить фундаментальным свойством материи и сделать постулатом новой теории.
И открыла для творчества теоретиков небывалый простор, уже не ограниченный рамками даже логики и здравого смысла.


Самоорганизующиеся системы классической физики

Модель атома Резерфорда с точки зрения инженера-электрика 1910-х годов была рядовой электромагнитной системой, а вопрос об отсутствии из нее излучений имел тривиальное решение в следующем. Электроны, двигаясь в атоме, излучают, но атом в целом - нет, следовательно в атоме есть еще один источник излучения - ядро. За пределами атома эти два излучения, суммируясь, обращаются в нуль. Возражений быть не могло, т.к. сведений о ядре для этого недоставало. Пределы компетенции теории Фарадея-Максвелла распространяются при этом в глубину атома, заканчиваясь вблизи ядра. Для выводов о неприменимости этой теории к микромиру не было оснований, т.к. вопросы о ядре, о том, почему оно излучает именно так, выходят за эти пределы и относятся к другой теории. Конечно же, самоорганизация - природная автоматика, приводящая атом к неизлучающим состояниям, казалась тогда явлением невероятным - интуиция отвергала строгую логику математической теории.

Однако решение этого вопроса могло быть найдено в известных тогда принципах радиоприёма - как отбора мощности из потока излучений в колебательные системы. Далее будем иметь в виду только периодические движения, колебания и излучения.

Для того, чтобы модель атома не излучала при любом числе "электронов", занимающих дискретный ряд орбит, моделью его ядра должна служить открытая колебательная система без внутренних потерь энергии. Необходимо и достаточно, чтобы она имела дискретный ряд резонансных частот, соответствующих орбитам "электронов", и некоторое множество форм (мод) резонансов на каждой из этих частот, - т.е. типичные общие свойства объемных резонаторов. Конкретные же свойства предстояло вычислить, исходя из спектров излучений и устойчивых состояний атомов.

Подобные системы при достаточности степеней свободы колебаний способны самопроизвольно приходить к неизлучающему состоянию. Если модель атома излучает на частотах резонансов, то в колебательной системе ("ядре") возбуждаются колебания, которые тоже излучают. Различные формы (моды) колебаний излучают различно, их амплитуды и фазы подвижны, но развиваются лишь те из них и при таких фазах, которые, излучая, уменьшают общую мощность излучения из модели, т.е. поглощают энергию излучения, за счет которой и развиваются. Прочие колебания затухают, излучив энергию. Пока модель излучает, она питает энергией всё новые и новые колебательные процессы в "ядре". Так продолжается или до исчерпания степеней свободы колебаний, или, при их достаточности, до полного погашения излучений. Тогда "электроны" в модели движутся, не теряя энергию, т.к. излучения их и "ядра" взаимно погашаются. Так модель приходит к устойчивому состоянию. Спектры резонансов "ядра" дискретны - дискретны и устойчивые орбиты "электронов".

Описанное явление можно понимать как явление самоорганизации колебательно-волновых процессов, свойственное колебательным системам, достаточно для этого сложным. То же явление порождает общую тенденцию таких систем к неизлучающим или минимально излучающим состояниям, чем отчасти можно объяснять энергетическую устойчивость электромагнитных динамических систем в микромире вообще.

Принципиальная возможность неизлучающих систем, составленных из элементов и систем излучающих, вытекает из общего решения волнового уравнения для сферических координат, найденного Гамильтоном в 1903 году. К любому локальному источнику излучения найдётся бесконечное множество различных других источников, в том числе отдалённых и локальных, каждый из которых излучает в дальнее пространство точно такое же поле. Это может быть доказано математически. Пара таких источников, излучающих в противофазе, составит систему, в дальнее пространство не излучающую.

Вот эти способности колебательно-волновых систем сохранять энергию позволяли предложить физическую модель твердого тела, очевидную еще из опытов Герца в 1888 году, - в виде группы когерентных электромагнитных осцилляторов, предоставленной действию только внутренних сил. Осцилляторы, излучая общее когерентное поле, двигаясь в нем и поворачиваясь, занимают устойчивые положения на расстояниях друг от друга.
Образуется некое упругое тело.
В качестве осцилляторов пригодны простейшие генераторы колебаний с излучающими колебательными контурами из индуктивностей и емкостей или иными открытыми резонаторами. Если между ними действуют еще и статические силы притяжения, то генераторы "входят в синхронизм", занимают устойчивые положения в пучностях поля и образуют искусственное упругое тело, в некоторой степени упорядоченное по структуре.

Т.к. всё это происходит само собой, такие группы могут быть названы самоорганизующимися системами. С другой стороны - это рядовые объекты теоретической электротехники, электромагнитные автоколебательные системы, движущиеся в пространстве и по фазам к своим устойчивым состояниям.

Здесь также есть тенденция к минимально излучающим состояниям, и в случаях, когда в такой системе присутствуют достаточно сложные резонаторы и нет внутренних потерь энергии, она способна сохранять энергию. Энергия, необходимая для существования модели, может пополняться, поступая в виде внешних воздействий и тепловых движений. Любого рода умеренные воздействия на элементы модели выводят их из устойчивых положений, передавая свою энергию полям и процессам, удерживающим элементы в устойчивых положениях. Это обычное электромеханическое преобразование энергии и автогенерация колебаний здесь выступают как явление самоорганизации энергии с ее упорядочением. То же имеет место и в моделях атомов. Таким образом, энергетика и целостность естественных тел как сложных колебательных систем объясняются до конца, а их модели становятся полными.

Возможно, энергетика моделей будет понятнее физику по аналогии с лазерами - как такого же множества когерентных излучающих осцилляторов с теми же тенденциями к удержанию энергии в виде минимально излучающих мод и с тем же математическим описанием, хотя и с тепловой "накачкой". Можно бы поискать и аналогичное излучение. В отличие от лазера, здесь действует механизм преобразования энергии, общий для всех частот, поэтому конкуренция возможна и между модами разных частот.

Модели атомов могут таким же образом складываться в модели молекул и тел, образуя функционально законченные системы, способные существовать автономно в энергетическом равновесии с окружающей средой. Модели атомов, образуя модель молекулы, переходят в иные, излучающие состояния и образуют устойчивую неизлучающую группу излучающих атомов, в которой действуют те же энергетические процессы самоорганизации. Аналогично, модель твердого тела - это устойчивое неизлучающее множество излучающих элементов и частей.
Однако абсолютное отсутствие излучений не требуется.

Таким образом, микромир предстаёт как мир самоорганизующихся систем природной автоматики, действующих в строгом соответствии с классической теорией Фарадея-Максвелла. О научной несостоятельности этой теории или ее неприменимости к микромиру не может быть и речи.
К тому же, теория - лишь инструмент, в неудачах мастера не повинный.

Искусственные тела - группы автоколебательных устройств - объекты технические, что даёт автору основания говорить о них с точки зрения профессии. Однако они имеют определенные устойчивые размеры, способны двигаться, могут быть изготовлены и существовать как объекты физики и ее теорий. Естественно, точки зрения инженера и физика здесь не одинаковы.

Искусственные упругие тела необычайно удобны для объективного решения старого спора о размерах тел. Эти тела можно в реальности или мысленно приводить в движения вокруг наблюдателя и погружать в электромагнитные среды, замедляющие скорость электромагнитных волн, где явления, связанные с движением, четко отделяются от ошибок наблюдения. К их самосинхронизирующимся осцилляторам и генераторам можно подключить систему электронных часов - счетчиков числа и долей колебаний. Эти системы - электромагнитные, потому при изменениях скорости испытывают реорганизацию в соответствии с преобразованиями Лоренца в их инженерно-техническом понимании. Приводя среду в движение, можно бы наблюдать без ошибок, что размеры погруженных в нее тел зависят от скорости среды, а система электронных часов Лоренцева "местного времени" показала бы при этом как зависят от скорости временные интервалы (разности фаз колебаний).

Из таких же тел (или моделей) с подключенными к ним часами можно было построить систему координат специальной теории относительности (СТО) и тем же способом (сравнивая в движении сквозь среду размеры самоорганизующихся систем, процессы в них и ход часов) установить, что постулаты СТО и ее фактическое содержание объясняются свойствами ее системы координат как гибкой самоорганизующейся системы, принятой в качестве меры, заведомо постоянной. Так, начиная с 1911 года, СТО можно было рассматривать как первую классическую теорию самоорганизующихся систем природы, лишь с иной точки зрения изложенную. Не было оснований представлять СТО как альтернативу классической физике и направлять на ее ниспровержение, принеся в жертву этот научный потенциал СТО, так и оставшийся непонятым. Не было также оснований для осмеяния Лоренца и Фицджеральда.

Сказанного, наверное, достаточно для вывода о том, что перед классической физикой не было проблем, объективно неразрешимых.
Их решения просто не были найдены.
Изложенные решения не содержат существенных ошибок, иначе не сложилась бы так легко и просто цельная картина микромира.

Классическая физика по-прежнему способна и к новым открытиям. Исследования самоорганизующихся объектов, ранее физике не известных, - физических моделей тел или тел искусственных - открывают ряд явлений, ранее также неизвестных, в том числе относящихся к фундаменту классической физики.

/ А.А. Шляпников | "Самоорганизующиеся системы классической физики"/
Tags: Мнение, Наука, Технологии, Человеческий мир
Subscribe
promo evan_gcrm february 9, 22:43 76
Buy for 20 tokens
Жизнь - лукавое обольщение, желанная сладкая ложь, а смерть - неожиданная горькая правда, которой лучше вовсе не знать. А узнав, отменить усилием воли и забыть навсегда. Из всех искусств, которыми следует овладеть мудрому человеку, важнейшим является искусство самообмана: пока…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments