evan_gcrm (evan_gcrm) wrote,
evan_gcrm
evan_gcrm

Чудо сито



Вселенная не структурирована, Вселенная хаотична и по большей части в ней нет структуры. А причина, по которой мы видим структуры, в том, что учёные работают, как сито; они фокусируются только на тех явлениях, у которых есть структура и которые можно предсказать.
Они не рассматривают все явления. Вместо этого они выбирают только те, с которыми могут управиться.

Наука изучает предсказуемые физические явления.
Это почти тавтология: наука предсказывает предсказуемые явления.


Учёные описали критерий для явлений, которые они решили изучать: он называется симметрией.
Симметрия – это свойство, согласно которому, несмотря на изменение чего-то, остаётся какая-то неизменная часть.
Когда мы говорим, что у лица есть симметрия, мы имеем в виду, что если отразить левую часть и заменить её правой, оно будет выглядеть так же.
Когда физики используют слово «симметрия», они обсуждают наборы физических явлений. У набора явлений есть симметрия, если после некоторого изменения он остаётся таким же. Самый очевидный пример — симметрия местоположения. Это значит, что если провести тот же самый эксперимент в двух разных местах, результаты должны быть одинаковыми. Симметрия времени означает, что результаты экспериментов не должны зависеть от того, когда эксперимент проводился. Есть множество других типов симметрии.

У явлений, избранных учёными для исследований, должно быть множество разных типов симметрий. Когда физик видит много явлений, он сначала должен определить, есть ли у них симметрия. Он проводит эксперименты в разных местах и в разное время. Если он достигает тех же результатов, он затем изучает их в поисках первопричины. Если же эксперименты оказались несимметричными, он их игнорирует.

Симметрия служит определяющей характеристикой физики.
У чего есть симметрия, у того будет закон природы.
А остальное не принадлежит к науке.

Эмми Нётер доказала мощную теорему, определившую связь между симметрией и законами сохранения. Она связана с константами природы, центральной частью современной физики.
Опять-таки, при наличии симметрии будут и законы сохранения, и константы.
Физик должен быть ситом, и изучать явления, обладающие симметрией, позволяя тем явлениям, что симметрией не обладают, проскальзывать сквозь пальцы.

Идея о том, что мы видим структуру только потому, что избираем подмножество явлений, нова и сложна для восприятия.

Если мы не изучаем систему в целом, но смотрим на особые подмножества, мы видим больше структуры. В физике мы берём определённое явление (обладающее симметрией), и игнорируем остальные. В математике мы рассматриваем определённые подмножества структур и игнорируем остальные. Две этих операции выноса за скобки работают сообща.

Задача физики – сформулировать функцию из набора наблюдаемых физических явлений, приводящую к математической структуре:

наблюдаемые физические явления → математическая структура

То есть, обозреваемому миру мы должны дать математическую структуру. По мере продвижения физики и того, как мы пытаемся понять всё больше наблюдаемых физических явлений, нам требуются всё большие классы математики. В понятиях этой функции, если мы хотим увеличить ввод функции, нам нужно увеличить и её вывод.

Существует множество примеров расширения физики и математики.

Когда физики начали работать с квантовой механикой, то поняли, что упорядоченные вещественные числа слишком сильно их ограничивают. Им потребовалась числовая система с меньшим количеством аксиом. Они обнаружили комплексные числа.

Когда Альберт Эйнштейн хотел описать ОТО, он понял, что математическая структура евклидова пространства с её аксиомой о плоскости (пятый постулат Евклида) была слишком ограничивающей. Ему нужно было искривлённое, неевклидово пространство, для описания пространства-времени в ОТО.

В квантовой механике известно, что в некоторых системах измерение сначала X, а затем Y, приведёт к результатам, отличным от полученных в случае, когда мы сначала измеряем Y, а затем X. Для математического описания этого необходимо выйти из уютного мира коммутативности. Им требуется более общий класс структур, не подразумевающих коммутативность.

Когда учёные заговорили о логике квантовых событий, они поняли, что обычная, дистрибутивная логика, слишком ограничивающая. Им необходимо было сформировать более общий класс логики, в котором аксиома дистрибутивности уже не обязательно выполнялась. Теперь это называется квантовой логикой.

Поль Дирак понял это ослабление аксиом ещё 85 лет назад, когда писал следующее:
Непрерывный прогресс физики требует для теоретических формулировок такой математики, которая постоянно продолжает усложняться. Это естественно и ожидаемо. А вот чего учёные прошлого века не ожидали, так это определённой формы, которую примет направление усложнения математики, а именно, ожидалось, что математика будет становиться всё более сложной, но будет основываться на постоянном базисе из аксиом и определений. На самом деле современное развитие физики требует математики, постоянно сдвигающей свои основы и становящейся более абстрактной. Неевклидова геометрия и некоммутативная алгебра, когда-то считавшиеся выдумкой и развлечением мыслителей, теперь оказываются необходимыми для описания общих фактов физического мира. Кажется вероятным, что этот процесс увеличения абстракции продолжится в будущем, и развитие физики будет связано с постоянным изменением и обобщением аксиом, лежащих в основе математики, а не с логическим развитием любой из математических схем, находящихся на неподвижной основе.

Для описания большего количества явлений нам нужны всё большие классы математических структур и всё меньше аксиом.

Каково же логическое заключение этой тенденции?
Как далеко это может зайти?

Физики хотят описывать всё больше явлений в нашей Вселенной. Допустим, что мы хотим описать все явления Вселенной.

Какая математика нам для этого понадобится?
Сколько аксиом будет нужно математической структуре, описывающей все явления?

Одно из возможных заключений – если мы посмотрим на всю Вселенную разом, и не будем выносить за скобки никакие подмножества явлений, то нам нужна будет математика вообще без всяких аксиом.
То есть, в целом Вселенная свободна от структуры и для её описания аксиомы не нужны.

Полное беззаконие!

Математика без структуры – это просто множества. Это может, наконец, устранить всю метафизику, связанную с законами природы и математическими структурами.
Только тот способ, которым мы изучаем Вселенную, даёт нам иллюзию наличия структуры.

С таким взглядом на физику мы приходим к ещё более сложному вопросу:
Если видимая нами структура иллюзорна и происходит из нашего способа изучения определённых явлений, почему мы её видим?



Вместо того, чтобы изучать законы природы, формулируемые учёными, нам нужно изучить учёных и то, как они выбирают законы природы, подмножества явлений и всё, что с ними связано.
Какое свойство человека делает его таким хорошим ситом?
Вместо того, чтобы изучать Вселенную, нам нужно изучить тот способ, каким мы её изучаем.


/Источник/




Tags: Картина мира, Мироустройство, Мнение
Subscribe
promo evan_gcrm march 28, 19:35 75
Buy for 30 tokens
Основополагающим элементом, основным двигателем всей жизни, является репликатор. Скопированная информация - это и есть «репликатор». На Земле первый репликатор довольно бесспорный - это гены, или информация, закодированная в молекулах ДНК. Точнее это первый репликатор, о котором мы знаем.…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 4 comments