Если вы можете измерить то, о чем говорите, и выразить это в цифрах, значит, вы что-то об этом предмете знаете. Но если вы не можете выразить это количественно, ваши знания крайне ограниченны и неудовлетворительны. Возможно, это начальный этап, но еще не подлинно научное знание.
/Лорд Кельвин/
Когда какой-либо объект или явление удается наблюдать тем или иным образом, значит, существует метод для его измерения. Каким бы приблизительным ни было это измерение, оно все равно будет им, если расскажет больше, чем вы знали до сих пор.
Обычно люди считают вещи неизмеримыми по трем причинам:
- Сущность измерения. Многие неверно понимают саму идею измерения. Если бы люди осознали, что она означает на самом деле, то гораздо больше вещей стали бы для них измеримыми.
- Объект измерения. Зачастую объект измерения бывает определен недостаточно четко. Измерению мешают неточность и неоднозначность используемых терминов.
- Методы измерения. Многие техники эмпирического наблюдения известны недостаточно хорошо. Будь люди лучше с ними знакомы, стало бы очевидно, что многие вещи, считающиеся неизмеримыми, не только могут быть, но и уже кем-то количественно оценены.
Определение измерения.
Измерение — это совокупность снижающих неопределенность наблюдений, результат которых выражается некой величиной.
Таким образом, измерение — это не только полное устранение, но и частичное сокращение неопределенности. Факт присутствия ошибки, избежать которой полностью не удастся, при том что полученный результат все равно станет шагом вперед по сравнению с прежними представлениями, — ключевая идея проведения экспериментов, опросов и прочих научных измерений.
Шеннон предложил математическое определение информации как снижения неопределенности в сигнале, которое он обсуждает в терминах энтропии, сокращаемой данным сигналом.
Стивенс описал различные шкалы измерения, включая номинальную (шкалу наименований) и порядковую. Номинальные измерения просто показывают принадлежность объекта к той или иной категории. Шкалы наименований не предполагают ранжирования или сравнения, в частности по размерам. Объект просто относят к той или иной категории. Порядковые шкалы позволяют утверждать, что одна величина «больше» другой, не уточняя, однако, на сколько. Примером может служить 4-звездочная система оценки кинофильмов или шкала твердости минералов по Моосу. В обеих шкалах 4 больше, чем 2, но не обязательно вдвое.
Объект измерения.
Ничто так не мешает прогрессу знания, как расплывчатость терминологии.
/Томас Рейд/
Цепочка уточнений — это просто короткий ряд ассоциаций, помогающий представить себе нематериальный объект как материальный. Сначала мы осознаем, что если объект X имеет для нас значение, то он, по определению, должен в чем-то проявляться. Разве могли бы такие реальности, как качество, риск, безопасность или репутация, иметь для нас какую-то ценность, не проявляй они себя прямо или косвенно? Если возникает причина интересоваться неизвестной величиной, значит, мы думаем, что она каким-то образом приводит к желательным или нежелательным последствиям.
Правило пяти.
Существует 93%-ная вероятность того, что в любой случайной выборке медиана для всей совокупности находится в интервале от между наименьшим и наибольшим значениями.
…когда наблюдение сообщает нам нечто, чего мы раньше не знали, это означает, что произведено измерение.
Статистик Дэвид Мур, возглавлявший в 1998 г. Американскую статистическую ассоциацию (American Statistical Association), как-то сказал следующее: «Измеряйте, даже если не знаете, что измерять. Тогда вы и узнаете, что вам нужно измерить».
Отнеситесь к измерению как к итеративному процессу. Начните измерять то, что вам нужно. Получив первые результаты, вы всегда сможете скорректировать свой метод. Обычно для измерения большинства вещей, называемых нематериальными, не хватает вовсе не передовых замысловатых способов. Как правило, неопределенность в отношении подобных объектов так велика, что уменьшить ее позволяют и базовые методы измерения.
Ключевой этап прикладной информационной экономикой / applied information economics, AIE (и этим объясняется название метода) — расчет экономической стоимости информации.
ЗНАЧЕНИЕ ИМЕЮТ ЛИШЬ НЕСКОЛЬКО ВЕЩЕЙ. В каждом случае лишь несколько ключевых переменных имеют значение, оправдывающее усилия по их определению. Информационная ценность остальных равна или практически равна нулю.
Универсальный подход к измерению:
- Что вы пытаетесь измерить? Что на самом деле представляет собой этот якобы неизмеримый объект?
- Почему вы хотите его измерить? Какое решение будет принято по результатам измерения, и каким должно быть «пороговое значение» определяемого показателя?
- Что вам известно сейчас — какие интервалы или вероятности представляют нынешнюю неопределенность?
- Какую ценность имеет данная информация? К каким последствиям приведет ошибка, какова ее вероятность и какие усилия, связанные с измерением, будут оправданы с экономической точки зрения?
- Какие наблюдения, затраты на которые будут оправданы ценностью требуемой информации, позволят подтвердить или исключить различные возможности? Что именно мы должны увидеть сразу, если сбудется тот или иной сценарий?
- Как учесть такие ошибки при измерении, которых можно избежать (опять при условии, что затраты оправдаются ценностью информации)?
Измерение — один из основных инстинктов человека, однако этот инстинкт подавляется в условиях, когда люди предпочитают создавать комитеты и добиваться консенсуса вместо того, чтобы делать простые наблюдения.
Прежде чем приступить к измерению, задайте себе следующие пять вопросов:
- Какое решение будет принято с учетом результатов данного измерения?
- Что на самом деле представляет собой объект измерения?
- Почему данное измерение необходимо для принятия решения?
- Что мы знаем об объекте измерения в настоящий момент?
- Какова ценность проведения дальнейших измерений?
Первые три вопроса помогают понять, что представляет собой объект оценки в рамках решений, которые планируется принимать по результатам измерения. Если эти результаты вообще имеют значение, то только потому, что они понятным образом влияют на решения и линию поведения. Когда не удается установить, какие решения будут затронуты итогами задуманного измерения и способ их воздействия, значит, это измерение просто не имеет никакой ценности.
Неопределенность, риск и их показатели:
- Неопределенность. Отсутствие полной определенности, то есть существование более чем одной возможности. «Истинный» результат (состояние, последствие, стоимость) неизвестен.
- Показатель неопределенности. Ряд вероятностей, приписанных ряду возможностей.
- Риск. Такое состояние неопределенности, когда в число возможностей входят убытки, катастрофы или другие нежелательные исходы.
- Показатель риска. Набор возможностей с приписанными ими количественными вероятностями и количественно определенным ущербом.
Специалисты решили, что повышение безопасности означает снижение частоты определенных нежелательных событий и уменьшение ущерба от них.
Оказывается, способность человека оценить шансы можно калибровать – точно так же, как любой научный инструмент калибруется для получения правильных показаний.
Один из способов показать неточность определения величины — выразить ее в виде интервала возможных значений. В статистике интервал, в котором с некоторой вероятностью может содержаться правильный ответ, называется доверительным интервалом (confidence interval, CI); 90%-ный доверительный интервал — это диапазон значений, содержащий правильное с вероятностью 90%.
ДВЕ КРАЙНОСТИ СУБЪЕКТИВНОЙ ОЦЕНКИ:
- Чрезмерная уверенность наблюдается, когда человек постоянно переоценивает точность своих знаний и оказывается правым реже, чем ожидает. Например, когда такого специалиста просят оценить что-то в виде 90%-ного доверительного интервала, в его пределах оказываются гораздо меньше, чем 90%, правильных ответов.
- Недостаточная уверенность проявляется, когда человек постоянно недооценивает точность своих знаний и оказывается правым намного чаще, чем ожидает. Например, когда такого специалиста просят оценить в виде 90%-ного доверительного интервала, в его пределы попадают гораздо больше, чем 90%, правильных ответов.
Теоретические исследования доказали, что если людей специально учат преодолевать систематические ошибки и необъективность, их оценки становятся существенно точнее.
Оказалось, что оценка неопределенности — это навык, который можно приобрести и который можно совершенствовать.
Методы повышения точности калибровки вероятности:
1. Повторение и обратная связь - выполните подряд несколько тестов, оценивая результаты каждого, и повторите их, чтобы улучшить в следующий раз.
2. Эквивалентные ставки - придумайте эквивалентную ставку для каждой оценки, чтобы проверить, действительно ли предложенный диапазон значений или вероятность отражает неопределенность.
3. Перечисление двух доводов «за» и двух «против» - приведите, по крайней мере, две причины, по которым вы уверены в своей оценке, и две причины, по которым вы могли ошибиться.
4. Преодоление зацикленности - представьте проблему диапазона оценки в виде двух бинарных вопросов типа: «Уверен ли я на 95%, что истинное значение лежит выше нижней (ниже высшей) границы предложенного мною диапазона?»
ПАРАДОКС РИСКА.
Если организация и применяет количественный анализ рисков, то обычно это делается для принятия повседневных оперативных решений. Самые серьезные и опасные решения (чаще всего) формулируются при минимальном использовании полноценного анализа риска.
Почти все самые сложные методы анализа риска применяются при принятии простых решений, почти не влекущих серьезных негативных последствий, однако решения о слияниях, крупных инвестициях в ИТ, финансировании научных исследований и т.д. обычно формируются без этой процедуры.
Почему так происходит?
Может быть, из-за существующего мнения о том, что оперативные решения (одобрение кредита или расчет страховой премии) количественно оценить намного проще в отличие от действительно сложных проблем, связанных с рисками, которые с трудом поддаются точному расчету.
Это серьезное заблуждение.
Оценка стоимости информации.
Главные причины тому, что информация имеет свою стоимость для бизнеса:
- информация снижает неопределенность в связи с решениями, имеющими экономические последствия;
- она влияет на поведение людей, и это также имеет экономические последствия;
иногда информация сама обладает собственной рыночной стоимостью.
Вероятность ошибиться и цена ошибки: ожидаемые потери от упущенных возможностей.
Более 50 лет назад в теории игр — области, понятной лишь посвященным, — была разработана такая формула стоимости информации, которую можно не только вывести математически, но и уяснить интуитивно. Снижение неопределенности (то есть проведение измерений) позволяет делать более удачные ставки (то есть принимать более обоснованные решения). Знать стоимость измерений необходимо, чтобы определить, как можно измерить что-либо и следует ли этим заниматься вообще.
Чтобы не усложнять, рассмотрим бинарную ситуацию: вы либо преуспеете, либо провалитесь — вариантов больше нет.
Предположим, что вы заработаете 40 млн. дол., если реклама сработает, и потеряете 5 млн. дол. (затраты на проведение кампании) в другом случае. Допустим также, что ваши калиброванные эксперты говорят, что существует вероятность провала рекламы 40%. Обладая этой информацией, вы можете составить таблицу:
Потери от упущенных благоприятных возможностей (opportunity loss, OL) — это просто те затраты, которые мы понесем, если выберем путь, который окажется ошибочным.
Ожидаемые потери от упущенных возможностей (expected opportunity loss, EOL) для той или иной стратегии можно рассчитать путем умножения вероятности допустить ошибку на цену ошибки.
В нашем примере мы получим такие ответы:
Ожидаемые потери от упущенных благоприятных возможностей возникают из-за того, что вы не знаете, какова вероятность негативных последствий принимаемого решения. Сумей вы снизить данную неопределенность, уменьшится и EOL.
Именно это и позволяет сделать измерение.
Все измерения, результаты которых имеют некую стоимость, приводят к снижению неопределенности в отношении показателя, влияющего на решение, чреватое экономическими последствиями. Чем сильнее уменьшаются ожидаемые потери от упущенных благоприятных возможностей, тем больше стоимость информации, полученной путем измерения.
Разница между значениями EOL до и после измерения называется ожидаемой стоимостью информации (expected value of information, EVI).
Расчет ожидаемой стоимости информации, получаемой в ходе измерений, до их проведения требует от нас предварительной оценки ожидаемого снижения неопределенности. Иногда это бывает довольно трудно сделать из-за сложности определения некоторых переменных, но возможен и упрощенный подход. Легче всего рассчитать ожидаемую стоимость полной информации (expected value of perfect information, EVPI). Если бы существовала возможность полного устранения неопределенности, то значение EOL уменьшилось бы до нуля.
Таким образом, EVPI — это просто EOL выбранного вами варианта.
В нашем примере решение, принимаемое без осуществления измерений, заключается в одобрении плана проведения рекламной кампании, тогда ожидаемые потери от упущенных благоприятных возможностей составляют 2 млн. дол. Таким образом, стоимость устранения любой неопределенности относительно успешности планируемой акции просто равна 2 млн. дол. Если удается не устранить, а только уменьшить неопределенность, то ожидаемая стоимость информации несколько сокращается.
Стоимость информации.
Ожидаемая стоимость информации (EVI) = Сокращение ожидаемых потерь от упущенных благоприятных возможностей (EOL): EVI = EOL (до измерений) – EOL (после измерений),
где EOL — вероятность ошибиться, умноженная на цену ошибки.
Ожидаемая стоимость полной информации (EVPI) = EOL до измерений (если информация точна и полна, то EOL после измерений равна 0).
Стоимость информации для переменных величин.
Предположим, что в нашем примере с рекламой возможны не два исхода, а результат в виде интервала значений. Калиброванный маркетолог на 90% уверен, что эта рекламная кампания поможет увеличить продажи на 100 тыс. — 1 млн. единиц продукции. Однако чтобы достичь точки безубыточности нашей кампании, нужно продать некий объем продукции. Допустим, что с учетом затрат на проведение рекламной акции и валовой прибыли от продукта мы определили наступление точки безубыточности при реализации – 200 тыс. единиц товара. Продав меньше, мы понесем чистые убытки, причем чем меньше объем реализации, тем крупнее эти убытки. Продав ровно 200 тыс. единиц продукции, мы не получим ни прибыли, ни убытков. А если реализовать товар не удастся вообще, то мы потеряем деньги, израсходованные на рекламную кампанию, а именно 5 млн. дол. (вы можете сказать, что этим убытки фирмы не ограничатся, но для простоты будем учитывать только их).
Другая точка зрения состоит в том, что на каждой не проданной нами единице продукции, которую надо реализовать для достижения безубыточности, мы потеряем 25 дол. Какова в этой ситуации стоимость снижения неопределенности результата кампании?
Чтобы рассчитать EVPI для подобных интервалов значений, необходимо:
- разбить распределение значений на сотни или тысячи мелких сегментов;
- рассчитать потери от упущенных благоприятных возможностей для медианы каждого сегмента;
- рассчитать вероятность для каждого сегмента;
- умножить потери от упущенных возможностей в каждом сегменте на их вероятности;
- суммировать произведения, полученные на этапе 4 для всех сегментов.
Лучше всего создать для этой цели макрос на базе Excel или написать программу, которая разбила бы распределение значений примерно на 1000 фрагментов, а затем выполнила требуемые расчеты. Так мы гарантированно рассмотрим все важные ситуации и исключения. Чтобы упростить задачу, я уже проделал за вас основную работу. Теперь все, что вам нужно, — это использовать пару следующих графиков и выполнить несколько несложных арифметических расчетов.
Прежде чем приступить к делу, нужно решить, какую из границ 90-процентного доверительного интервала (верхнюю или нижнюю) считать лучшей (best bound, ВВ), а какую — худшей (worst bound, WB).
Ясно, что иногда лучше самое большое число (если, например, речь идет о доходах), а порой — самое маленькое (если мы говорим о затратах). В примере с рекламной кампанией маленькое число — это плохо, то есть WB — 100 тыс., а ВВ — это 1 млн. единиц продукции. По этим данным мы рассчитаем показатель, который я называю «условным порогом» (relative threshold, RT); он указывает, где находится порог относительно остальных значений интервала.
Мы используем условный порог для четырехэтапного расчета ожидаемой стоимости полной информации:
- рассчитаем условный порог: RT = (Порог – WB) / (ВВ – WB). Или (1 000 000 — 200 000) / (200 000 – 100 000) = 0,11;
- найдем местоположение RT на вертикальной оси рисунка 7.2;
- двигаясь вправо от значения RT, мы видим две серии кривых: одну (слева) для нормальных и другую (справа) для равномерных распределений. Поскольку в нашем примере распределение является нормальным, найдем точку пересечения кривой для нормальных распределений с прямой, проведенной через значение RT параллельно горизонтальной оси. Я назову эту величину фактором ожидаемых потерь от упущенной благоприятной возможности (expected opportunity loss factor, EOLF). В данном случае EOLF равняется 15;
- рассчитаем EVPI: EVP = EOLF / 1000 * OL на единицу продукции * (ВВ – WB). В нашем примере EVPI = 15/1000 * 25 * (1 000 000 –– 100 000) = 337 500 дол.
Расчет показывает, что максимально допустимые затраты на проведение измерения не должны превышать 337 500 дол. (это число определено исходя из предпосылки, что измерение полностью устранит неопределенность).
Мир несовершенен: стоимость частичного снижения неопределенности.
В последнем примере с ожидаемой стоимостью полной информации мы оценили затраты на полное устранение неопределенности, а не ее снижение. Расчет EVPI полезен сам по себе, поскольку, по крайней мере, позволяет узнать потолок стоимости информации, который не должен быть превышен при осуществлении измерений. Однако нередко приходится довольствоваться простым снижением неопределенности, особенно когда речь идет о прогнозе, например, роста продаж в результате проведения рекламных кампаний. В таких случаях полезно знать не только максимальную сумму, которую можно израсходовать в идеальных условиях, но и во что обойдется измерение в реальной жизни (обязательно сопровождаемое реальной погрешностью). Иными словами, нам надо знать ожидаемую стоимость информации, а не ожидаемую стоимость полной информации.
Для этого полезно мысленно представить себе, как выглядит график зависимости EVI от объема информации:
Инверсия измерений:
- Стоимость информации о подавляющем большинстве переменных равна нулю, то есть существующий уровень неопределенности для них вполне приемлем и дальнейшие измерения были бы экономически нецелесообразными.
- Особенно высока стоимость информации о тех переменных, которые обычно не оцениваются.
- Стоимость информации о переменных, на определение которых обычно тратится больше всего времени и средств, очень невелика или просто равна нулю (то есть крайне маловероятно, чтобы их уточнение влияло на принимаемые решения).
Чему нас учит расчет стоимости информации:
- Измерения — процесс итеративный. Самую ценную информацию мы получаем на начальном этапе измерений, поэтому разбейте весь процесс на несколько этапов и подведите итоги каждого из них.
- Стоимость информации имеет значение. Не определив заранее эту стоимость, вы, скорее всего, измерите не то и не так.
Переход от объекта в методу измерения.
- Разложите объект измерения на составляющие. Многие измерения начинаются с разложения неизвестной величины на составляющие с целью выявления того, что можно наблюдать непосредственно и что легче поддается количественной оценке.
- Эффект разложения на составляющие состоит в том, что сам процесс нередко обеспечивает такое значительное снижение неопределенности, что дальнейшие наблюдения становятся ненужными.
- Вторичные исследования: предположим, что до вас этот объект уже измеряли. Исследование начинается с вторичных исследований, то есть с анализа результатов, полученных до вас. Все исследователи считают само собой разумеющимся, что проблемой уже кто-то занимался. Анализ имеющейся литературы, похоже, еще не вошел у менеджеров в привычку.
Не измеряйте точнее, чем нужно.
КРАТКИЙ ГЛОССАРИЙ ПОГРЕШНОСТИ:
- Систематическая ошибка, или систематическое отклонение (смещение) — неотъемлемое свойство процесса измерения давать определенный результат; постоянное отклонение.
- Случайная ошибка — ошибка, непредсказуемая для отдельного наблюдения, непостоянная и не зависящая от известных величин (хотя в своей массе такие ошибки подчиняются законам вероятности).
- Точность — характеристика измерений, дающих низкую систематическую ошибку, то есть таких, когда искомое значение не занижается и не завышается на постоянной основе.
- Достоверность — характеристика измерений, дающих низкую случайную ошибку, то есть таких, которые дают аналогичные результаты, пусть и далекие от истинного значения.
Ошибку, не исключаемую путем усреднения (систематическую ошибку), называют также отклонением, или смещением. Есть три основных типа отклонений, которые можно ожидать при проведении измерений: отклонение ожидания, отклонение выбора, отклонение наблюдателя.
Итак, мы установили, что:
- когда исходная неопределенность высока, для ее существенного снижения достаточно изучить несколько объектов из генеральной совокупности;
- калиброванные эксперты сумели снизить неопределенность, отобрав из генеральной совокупности всего один объект, чего не может традиционная параметрическая статистика;
- оценки калиброванных экспертов обоснованны, но осторожны; чтобы снизить неопределенность еще больше, нужно провести дополнительные расчеты.
Парадокс предварительного знания:
- Вся традиционная статистика исходит из того, что наблюдатель ранее не располагал никакой информацией об объекте наблюдения.
- В реальном мире данное допущение почти никогда не выполняется.
Проблему прежних знаний изучает так называемая байесовская статистика.
Автор этого метода — Томас Байес, британский математик и пресвитерианский священник XVIII века.
Байесовская статистика занимается вопросом: как мы корректируем свое предварительное знание с учетом новой информации?
Байесовский анализ начинается с того, что известно сейчас, и затем рассматривает, как это знание изменится с получением новых сведений. А небайесовская статистика, преподаваемая в большинстве курсов по методам выборочного наблюдения, исходит из следующего: все, что известно о некоей группе объектов, — это выборка, которую вы только что из нее сделали.
Теорема Байеса гласит, что вероятность наступления «события» при условии проведения «наблюдения» равна произведению вероятности наступления события и вероятности проведения наблюдения при условии наступления события, деленному на безусловную вероятность проведения наблюдения.
Используйте свой природный байесовский инстинкт:
- сначала дайте объекту (явлению) свою калиброванную оценку;
- затем соберите дополнительную информацию (проведите опрос, изучите работы других исследователей и т.д.);
- далее чисто субъективно скорректируйте свою калиброванную оценку без дополнительных расчетов.
Неоднородный бенчмаркинг и его использование для оценки «ущерба бренду». Люди корректируют свои оценки потому, что, как мы теперь знаем, все они, особенно калиброванные оценщики, являются интуитивными байесианцами. Они склонны довольно рационально обновлять первоначальную информацию, которой обладали, учитывая новые сведения, даже если те носят качественный характер или имеют к оцениваемому объекту отдаленное отношение.
Представление о порядке величин. Неоднородный бенчмаркинг — метод, при котором калиброванным экспертам, оценивающим неизвестную величину, предоставляют в качестве ориентиров другие количественные показатели, даже если связь между ними и кажется отдаленной. Пример: прогнозирование продаж нового продукта на основе информации о сбыте других товаров или аналогичных конкурентных продуктов.
Избегайте «инверсии наблюдения». Многие задают вопрос: «Какой вывод я могу сделать из этого наблюдения?» Но Байес показал нам, что нередко полезнее задать вопрос: «Что я должен наблюдать, если будет соблюдаться условие X?» Ответ на последний вопрос позволяет разобраться с первым.
«Мягкие» аспекты измерения.
Количественное определение склонности к риску.
На рис. представлена кривая риска, на который инвесторы готовы пойти, чтобы получить данную доходность. Когда потенциальная доходность инвестиций высока, инвесторы обычно готовы смириться с более высоким риском. Если же инвестиции малорискованны, то чаше всего инвесторы соглашаются и на более низкую доходность.
Кривая инвестиционной границы — идеальный инструмент, позволяющий определять, какой частью одного стоит пожертвовать ради получения другого. Разнообразные виды кривых полезности помогают тем, кто принимает решения, детально выяснять, какой компромисс для них приемлем.
Могу ли я считать, что тот, кто делает всю работу вовремя и почти без ошибок, работает эффективнее того, кто постоянно получает больше положительных отзывов клиентов? На самом деле это не проблема измерения, а вопрос документального оформления субъективных компромиссов. Это проблема отражения множества разнородных наблюдений в едином «индексе». И здесь, чтобы такое обобщение оказалось логичным, мы можем воспользоваться кривыми полезности. С их помощью достаточно просто показать, как сформулировать компромиссы.
Можно составить график, отражающий все возможные компромиссы, по аналогии с определением желаемого соотношения «риск/доходность».
График с несколькими кривыми полезности. Он иллюстрирует гипотетический пример оценки руководством компромиссов между качеством работы и пунктуальностью выполнения заказов.
Решающий инструмент измерения: людские суждения.
Человеческий мозг не просто машина для вычисления. Это сложная система, познающая окружающую среду и приспосабливающаяся к ней путем выработки разнообразных упрощающих правил. Практически все эти правила приносят правду в жертву простоте, а многие даже противоречат друг другу. Те, что не вполне обоснованны, но, тем не менее, полезны на практике, называются эвристикой. А те из них, что явно противоречат здравому смыслу, называются заблуждениями.
Примеры когнитивного искажения экспертами-оценщиками:
- зацикленность; если просто думать о какой-то цифре, пусть и не имеющей отношения к вопросу, то это может повлиять на ваш ответ (пример вопроса с «якорем»);
- эффект ореола; если люди сначала замечают некий факт, который настраивает их за или против какого-то варианта решения, то, получив в дальнейшем новую информацию, каким бы ни было ее содержание, они обычно воспринимают ее как аргумент в пользу сделанного ими первого заключения;
- стадный эффект, или эффект группового давления; оказывается, что если вы хотите выяснить мнение экспертов, то лучше опрашивать их по отдельности, а не всех вместе, поскольку в последнем случае возникает дополнительная погрешность (пример с «подсадными утками»);
- изменение предпочтений; как только люди начинают склоняться к одному варианту, они фактически меняют свои предпочтения по поводу дополнительной информации; они настраиваются на те сведения, которые поддерживают их первоначальное решение.
Первое, что необходимо сделать – признать само существовании е проблемы с искажением восприятия.
Картинка кликабельна.
Подведем итоги:
- Если нечто действительно важно, значит, вы можете это определить. Если нечто, по вашему мнению, вообще существует, значит, вы это уже каким-то образом наблюдали.
- Если нечто является и важной, и неизвестной величиной, то существует вероятность ошибки в ее оценке и понесения затрат в случае такой ошибки.
- Текущую неопределенность вы можете выразить количественно с помощью калиброванных оценок.
- Рассчитать стоимость дополнительной информации можно, определив пороговое значение интересующего вас показателя, то есть такое его значение, при котором принимаемое решение будет отличаться от решения, возможного в отсутствие этих сведений.
- Установив, что параметр заслуживает количественной оценки, вы сможете выбрать метод измерения и решить, сколько времени и сил следует потратить на его проведение.
- Даже поверхностное знакомство с несколькими методами случайной выборки, управляемыми экспериментами или даже просто способами уточнения экспертных оценок позволяет существенно снизить неопределенность.
/Дуглас Хаббард | "Как измерить всё, что угодно"/
Journal information