evan_gcrm (evan_gcrm) wrote,
evan_gcrm
evan_gcrm

Основы психологии познания | Часть №7




Основы психологии познания | Часть №1
Основы психологии познания | Часть №2
Основы психологии познания | Часть №3
Основы психологии познания | Часть №4
Основы психологии познания | Часть №5
Основы психологии познания | Часть №6


✔️ СЕНСОРНО-ПЕРЦЕПТИВНЫЕ ПРОЦЕССЫ.

Проведенный выше анализ свидетельствует о тесной взаимосвязи процессов восприятия движения и пространственного положения. Для когнитивных исследований в целом характерен особый интерес к взаимоотношениям различных субмодальностей восприятия, их связям с моторикой и высшими формами познания, примерно так же, как аналогичный вопрос о взаимодействии многочисленных специализированных механизмов мозга начинает доминировать в работах нейрофизиологов и нейропсихологов.

Как обстоит дело с взаимоотношениями других перцептивных процессов, отличных от только что рассмотренной группы процессов динамической пространственной локализации?


Ощущения света и цвета длительное время описывались философами, физиологами и психологами в качестве первичных фактов зрительного восприятия, более всего соответствующих тому, что можно было бы считать «специфическими энергиями» (или «квалиями») органа зрения.

Когнитивная нейрофизиология объясняет восприятия цвета как своеобразное сравнение сравнения.


Успешность различения четырех перцептивных признаков объекта.

Оценивая цвет объекта, мы можем игнорировать форму, но не положение или движение.
Цвет и форма — это независимые качества.

Этот вывод соответствует данным об относительной независимости их нейронных механизмов, возможности селективных выпадений и необходимости использования внимания для их одновременного восприятия. Что касается отношений процессов динамической локализации (восприятие положения и движения) и восприятия перцептивной идентичности предметов (форма и/или цвет), то, по крайней мере при жестких ограничениях на время восприятия, они явно носят асимметричный характер, что соответствует представлению о двух последовательных уровнях восприятия.


Теперь можно обратиться к линии исследований восприятия, связанной с анализом феноменов маскировки.

В психологии с термином «маскировка» ассоциируются две довольно различные группы феноменов. Гештальтпсихологи положили начало изучению статической маскировки (или камуфляжа). Она чрезвычайно широко распространена в биологическом мире, например, в виде вариантов адаптивной раскраски, делающей неподвижное животное трудноразличимым в естественной среде обитания.
Основу маскировки в этом первом значении слова образуют законы перцептивной организации.
В когнитивной психологии речь идет об эффектах динамической маскировки, которая возникает при быстром последовательном предъявлении информации.
Типичная процедура состоит в предъявлении в пространственно-временном соседстве двух стимулов — тестового и маскирующего. При несовпадении их локализаций говорят также о метаконтрасте.
Эффекты маскировки обычно оказываются сильнее, если маска следует за тестовым стимулом (обратная маскировка), а не предшествует ему (прямая маскировка).


Многочисленные данные демонстрируют два вида зависимости успешности опознания или оценки параметров первого стимула от задержки второго — монотонную и немонотонную, когда максимальный эффект маскировки наблюдается при асинхронностях включения 100—120 мс.

Для объяснения динамической маскировки было предложено два принципа — интеграции и прерывания.

Согласно первому принципу, маскировка есть результат объединения тестового стимула и маски в единый перцепт.
Такая комбинация затрудняет считывание информации о тестовом стимуле.

Согласно принципу прерывания, маскировка возникает из-за прекращения процесса считывания информации о тестовом стимуле, например, в результате вытеснения или стирания его перцептивной репрезентации маской.

Современные теории включают оба принципа. Считается, что интеграция действует при небольших интервалах между стимулами. При асинхронностях, превышающих 100 мс, вступает в силу механизм прерывания.

Это позволяет интерпретировать периферическую маскировку как реализацию принципа интеграции.

Легко видеть, что анализ процессов маскировки также приводит к выводу о существовании глобальной двухуровневой архитектуры восприятия: сначала объект воспринимается как относительно недифференцированное, но локализованное в трехмерном пространстве нечто, затем — как предмет с индивидуальными признаками, такими как цвет и форма.

Обсуждая результаты самых первых тахистоскопических экспериментов, Вильгельм Вундт отмечал, что «продолжительность жизни» зрительного образа может превышать номинальное время экспозиции стимула. По его наблюдениям, эта продолжительность обычно составляет примерно 250 мс. Он признавал также, что за это время возможны сдвиги внимания — идея, напоминающая современное представление о сканировании информации из иконической памяти.

В когнитивной психологии понятие об инерционности зрения превратилось в представление о периферическом зрительном регистре — иконической памяти.

Иконическая память.

Время сохранения иконического следа можно определить, меняя отсрочку акустической послеинструкции — при увеличении отсрочки объем хранящейся информации начинает быстро уменьшаться. Когда отсрочка достигает 300 мс, вычисленная эффективность запоминания перестает отличаться от результатов экспериментов с полным воспроизведением, то есть снижается до нижнего уровня «магического числа».

В течение примерно трети секунды после исчезновения зрительного стимула информация о нем продолжает сохраняться в виде быстроугасающего зрительного образа, или (по терминологии Найссера) «иконы».
В течение этого короткого времени информация может продолжать «сканироваться» из иконической памяти в более устойчивую, но ограниченную по объему кратковременную память.

Таким образом, в основу подхода к большому числу зрительных феноменов была положена очень простая идея, согласно которой начальным этапом процессов переработки информации является двумерная и статичная картина («зрительный сенсорный образ») физической стимуляции, исчезающая («затухающая») за время порядка трети или четверти секунды.
В связи с этим возникают вопросы о точной локализации, временных характеристиках и содержании иконической памяти.

Иконическая память оказалась состоящей из разноуровневых компонентов.

Неожиданным свойством видимой инерции оказалось то, что при уменьшении яркости стимула она возрастает. Та же тенденция наблюдается и при уменьшении длительности экспозиции. В литературе выдвигалось предположение об адаптивном характере этих эффектов: чем сложнее условия восприятия, тем больше продлевается время жизни иконы, чтобы облегчить работу вышестоящим инстанциям.
По-видимому, в этом случае значительно проще было бы говорить не об инерции, а о времени восприятия характеристик объектов, которое увеличивается при недостаточной энергии стимуляции.

Столь же сложен вопрос о характере информации, представленной в иконической памяти. Исследования показали, что успешный частичный отчет возможен на основании целого ряда «физических признаков»: положения, яркости, цвета, размера, общей ориентации символов и т.д. Интересно, что в этот список входят также параметры движения объектов, хотя от чисто инерционной, иконической системы отображения это было бы трудно ожидать. С другой стороны, селекция на основании фонологических или семантических признаков оказывается неэффективной.

Это соответствует представлению об иконической памяти как о прекатегориальном (то есть фиксирующем только физические признаки) хранилище.
Возможными, однако, остаются и другие объяснения: например, за отсутствие семантической информации могла быть принята ситуация, в которой информация о категориальной принадлежности символов присутствовала в ответах, но, в отличие от физических признаков, «не затухала».

Согласно современным данным, зрительная память, удерживающая полученную за время одной фиксации информации, часто работает всего лишь с одним объектом (обычно он является целью следующего саккадического скачка). Кроме того, спецификация этого объекта имеет довольно абстрактный характер, что, конечно, не позволяет говорить о какой-либо полной картинке видимой сцены — «иконической репрезентации».

Эхоическая память.

В силу ряда причин нельзя одновременно предъявить большое число звуковых сигналов так, чтобы они были в достаточной степени различимы.

Предполагалось, что эхоическая память — это точная реплика акустических событий, которая продолжает «звучать в нас» после их окончания, позволяя воспроизводить последнюю из только что сказанных нашим собеседником фраз в ответ на вполне справедливый упрек: «Да ты меня совершенно не слушаешь!»

Роберт Крау-дер (Crowder, 1978) предпочитает говорить не об эхоической памяти, а о «прекатегориальном акустическом хранилище».
Согласно этому автору, о существовании такого хранилища свидетельствуют три эффекта:
1) эффект недавности в позиционных кривых полного воспроизведения (то есть лучшее воспроизведение последних элементов ряда),
2) эффект модальности — более выраженный эффект недавности после слухового предъявления по сравнению со зрительным,
3) эффект аудиторного суффикса. Поскольку эффект недавности в целом чаще связывают с кратковременной памятью.

Рабочая память содержит целый ряд служебных компонентов, в том числе относительно пассивное фонологическое хранилище. Это последнее фиксирует продукты перцептивного анализа речи и оказывается более продолжительным (до нескольких секунд), чем гипотетический слуховой сенсорный регистр, или эхоическая память.
По-видимому, существование подобного фонологического хранилища, специализированного на поддержке процессов речевой обработки, и позволяет нам в ответ на справедливый упрек «Да ты меня просто не слушаешь!» практически всегда достаточно успешно воспроизвести последнее из того, что сказал наш собеседник.

Микрогенез как альтернатива.

Процесс всякого восприятия состоит в чрезвычайно быстрой смене целого ряда моментов или ступеней, причем каждая предыдущая ступень представляет психическое состояние менее конкретного, более общего характера, а каждая следующая — более частного и дифференцированного.
Восприятие трактуется здесь как развернутый во времени процесс, а не моментальный, постепенно растворяющийся в воздухе снимок.

Один из подходов состоит в анализе зависимости «сенсорной инерции» от времени, прошедшего с момента предъявления стимула (stimulus onsetasynchrony, SOA— асинхронность включения стимулов, ABC) и с момента его выключения (interstimulus interval). Микрогенез начинается в момент предъявления информации и поэтому должен быть связан с параметром асинхронности включения. Напротив, в случае эффектов сенсорной памяти решающее значение должен иметь интерстимульный интервал, так как инерция зрения (или слуха) просто увеличивает эффективную продолжительность стимула после его физического окончания.

Имеющиеся данные дают однозначный ответ — как слуховые, так и зрительные сенсорные эффекты определяются временем, прошедшим с момента включения стимула.

Восприятие предмета начинается с его динамической локализации в трехмерном окружении, после чего происходит спецификация его общих очертаний и, наконец, инвариантное восприятие тонких внутренних деталей.
Базовый цикл микрогенеза восприятия может занимать до 300 мс и требует, особенно в отношении анализа индивидуальных характеристик и деталей предметов, участия внимания (то есть осуществляется в режиме так называемого «фокального зрения»).


С этой точки зрения, через треть секунды после предъявления зрительный образ предмета обычно лишь впервые формируется, а отнюдь не прекращает свое существование.

Столь же естественно объясняется в рамках микрогенетических представлений и маскировка.
Она возникает из-за ошибочной спецификации маскирующего стимула вслед за правильной локализацией тестового. Иными словами, речь идет о подмене объекта: предъявление тестового объекта быстро (в течение примерно 100 мс) локализуется как некоторое требующее нашего внимания событие, но когда мы переходим затем к детальной спецификации его индивидуальных характеристик, таких как цвет и форма, то находим в соответствующей области окружения уже другой объект, который и воспринимается нами вместо первого.

Гетерохронность (разновременность) различных аспектов микрогенеза зрительного восприятия подтверждается нейрофизиологическими данными, свидетельствующими о существовании быстрых и медленных каналов сенсорной переработки. Они отличаются рядом анатомических особенностей (отсюда одно из их названий: магноцеллюлярные, крупноклеточные и парвоцвллюлярныв, мелкоклеточные).

В функциональном отношении эти механизмы также весьма различны. Каналы первого типа быстро отвечают на «размытую» информацию, наличие больших пятен, движение и появление объектов в широком поле зрения. Механизмы второго типа работают сравнительно медленно, реагируя на локальные перепады яркости, тонкие линии, другие мелкие детали.

На вопрос о том, достаточно ли этого разделения для описания микрогенеза, следует ответить отрицательно.
- Во-первых, не совсем ясны взаимоотношения между этими группами каналов. Обычно предполагается, что фазические каналы тормозят активность тонических.
- Бруно Брейтмейер (Breitmeyer, 1980), однако, приходит к выводу, что такое торможение является взаимным.


Распознавание конфигураций.

Важнейшей функцией восприятия является распознавание зрительных и акустических конфигураций, ведущее, в частности, к узнаванию предметов и их категоризации, то есть отнесению к той или иной семантической категории. Проблема механизмов распознавания, или «распознавания образов», является одной из центральных для целого комплекса когнитивных наук: психологии, нейрофизиологии, искусственного интеллекта и нейроинформатики.

Элементарной предпосылкой того, что некоторый объект вообще будет опознан, является его выделение в качестве фигуры из окружающего фона. Кроме того, при распознавании акцент лежит на индивидуальных признаках, таких как цвет поверхности и форма. Пространственно-ситуативные признаки (положение в пространстве, ориентация, движение, освещенность) выполняют при распознавании скорее технические функции — чаще всего их параметры лишь учитываются нами для того, чтобы дать инвариантную (константную) оценку индивидуальным признакам. Таким образом, можно сказать, что распознавание связано с относительно поздними стадиями восприятия, как бы «надстраивающимися» над процессами динамической пространственной локализации .

В последние годы были проведены систематические исследования законов перцептивной организации, направленные на выяснение природы влияющих на выделение фигуры из фона факторов и их взаимоотношений. При этом оказалось, что динамическая локализация в пространстве служит наиболее фундаментальной основой для такого выделения. Если разные законы перцептивной организации конфликтуют между собой, «навязывая» разные варианты группировки видимых компонентов сцены, то победителем обычно оказывается фактор близости, причем близости в трехмерном пространстве, а не на сетчатке.

Закономерное движение стимулов в трехмерном пространстве также оказывается сильнейшим фактором перцептивной организации. Если пространственно-динамические факторы нейтральны (например, когда в статичной конфигурации расстояния между элементами равны между собой), то второй по силе группой факторов оказывается глобальное сходство, определяемое такими признаками, как окраска, общая ориентация (для элементов, имеющих выраженную ориентацию) или размеры (зернистость). Только тогда, когда все эти факторы нейтрализованы, группировка начинает учитывать особенности и сходство собственно формы элементов.

Очевидное объяснение этих зависимостей состоит в том, что восприятие формы предполагает анализ уже выделенных из фона объектов, тогда как группировка основана на глобальной оценке сходства без предварительного восприятия формы образующих текстуру элементов.
Эти два процесса не просто различны, но часто противоположны по чувствительности к отдельным признакам объектов.

Особенно важную роль в распознавании играют именно процессы спецификации и распознавания формы.

Гештальтпсихологи считали восприятие формы первичным фактом восприятия, подчеркивая его «вещный», или предметный, характер.
В психологических подходах последних десятилетий центральное место занимают формальные теории описания структуры перцептивных конфигураций. Речь идет о синтаксическом подходе: сначала выделяются отдельные элементы (признаки), из которых по определенным правилам (грамматикам) строится перцептивное описание конфигурации.
Перцептивная сложность (информативность) конфигурации определяется числом операций, осуществляемых перцептивной системой для ее спецификации.

Одна из наиболее интересных теорий такого рода развивается голландским психологом Э.Левенбергом (Leeuwenberg, 1978). Модель постулирует повторения, зеркальные отображения и другие избыточные операции с разными элементами конфигураций, иногда осуществляемые в итеративном (повторном) режиме, то есть в ходе нескольких последовательных обращений к продуктам процесса кодирования.
Оценка сложности различных перцептивных интерпретаций используется для объяснения множества эффектов.



Так, можно задать вопрос, почему на рисунке мы всегда видим два пересекающихся квадрата, хотя теоретически возможны и альтернативные варианты, частично указанные в нижнем ряду. Ответ связан с относительной простотой процесса конструирования квадрата, для которого нужно повторное использование лишь двух элементов — отрезка фиксированной длины и угла 90°.
При других интерпретациях число элементов и разнообразие операций с ними возрастает.

Наиболее распространенными в настоящее время являются теории признаков и структурные теории распознавания. Фактически они дополняют друг друга: признаки понимаются как исходные элементы, а структурные теории — как правила их объединения.
Возникающие «описания» сравниваются с хранящимися в памяти репрезентациями (эталонами), и в случае совпадения происходит ассоциативная активация соответствующих узлов или областей семантической памяти. Хотя мы часто ориентируемся на отдельные признаки, особенно при поиске хорошо знакомых объектов, узнавание может происходить и на основании их более целостных комбинаций, как это подчеркивали гештальтпсихологи.

Вторую группу теорий распознавания образуют так называемые теории шаблонов. Они предполагают наличие в памяти целостных репрезентаций, с которыми сравниваются столь же целостные перцептивные описания предметов и событий.
Идея целостного сравнения подтверждается многочисленными результатами, свидетельствующими об ускорении опознания в случае общего перцептивного сходства тестового и эталонного объектов, а также данными Р. Шепарда и его коллег (например, Shepard & Podgorny, 1978) по мысленному вращению и другим пространственным трансформациям зрительных образов объектов в процессах узнавания.

Уже через сотые доли секунды после исчезновения изображения или смены точки фиксации в рабочей памяти сохраняется лишь относительно абстрактное описание одного-двух воспринятых объектов.
Несмотря на эту сравнительно обедненную постперцептивную информацию, наша память, несомненно, умудряется строить детальные и разнообразные долговременные репрезентации осмысленных предметных сцен.

К группе теорий, допускающих возможность целостного сравнения, примыкают теории прототипов, согласно которым при ознакомлении с элементами некоторого множества испытуемый постепенно выделяет одну или более центральных тенденций — прототипов. По отношению к ним и решается вопрос о принадлежности конкретного объекта к данному множеству. С существованием границ между классами объектов, тяготеющим к разным прототипам, связываются обычно эффекты категориального восприятия — два незначительно различающихся в отношении физических признаков объекта, которые попадают в разные классы (категории), кажутся более разными, чем объективно более различающиеся объекты, попадающие в одну и ту же категорию. Соответственно, во втором случае можно ожидать более быстрое узнавание различных объектов как одинаковых.

Формирование прототипов не сводится к абстрагированию признаков, так как можно подобрать множество объектов, не обладающих признаками будущего прототипа — в отношении различительных признаков прототип будет находиться «между» конкретными образцами.

В отличие от восприятия обычных предметов и объектов в нашем окружении (и в отличие от процессов чтения в культурах с алфавитной письменностью), узнавание лица в большей степени определяется именно целостными характеристиками, так что даже если в действительности речь идет об изменении некоторого локального признака, испытуемые воспринимают его глобально.
Например, изменение диаметра зрачка обычно не воспринимается как таковое, а интерпретируется глобально, скажем, как увеличение привлекательности. Целостное узнавание возможно только при нормальной пространственной ориентации.
Зависимость восприятия «внутренней геометрии» лица от его ориентации в пространстве ведет к тому, что при необычной ориентации мы, в известном смысле, становимся функционально слепыми к целостным фигуративным признакам. Эта зависимость имеет общий характер, но в случае лиц она выражена особенно сильно.

Как показывают данные клинических наблюдений и мозгового картирования, эти формы восприятия, по-видимому, преимущественно связаны с нижневисочными отделами правого полушария.
В нижневисочных отделах коры тоже локализуются процессы, существенные для узнавания, а также, что интересно, даже для простой детекции других категорий сложных зрительных стимулов.

Продолжительные споры относительно того, до какой степени могут быть специализированы процессы восприятия формы объектов и как это связано с межполушарными различиями, привели в последнее время к возникновению представления о своеобразной полуспециализации полушарий.
- Правополушарные механизмы вентрального потока переработки зритетьной информации обеспечивают целостное восприятие лиц, а также участвуют в обработке формы и узнавании повседневных предметов Однако они не вовлечены сколько-нибудь существенно в процессы восприятия формы букв (в культурах алфавитной письменности).
- Левополушарные механизмы, напротив, работают скорее с отдельными признаками объектов. Они обеспечивают процессы побуквенного чтения и частично участвуют в узнавании повседневных предметов, но не в узнавании лиц.


/Величковский Б. | "Когнитивная наука: Основы психологии познания"/

Продолжение следует.




Tags: Картина мира, Сознание
Subscribe

Recent Posts from This Journal

  • Переговоры. Часть №26

    Оригинал взят у odin_na_ldine Наша речь – это океан возможностей. Но едва ли мы используем весь свой багаж знаний и умений. Замечали…

  • Музыкальная пауза

    Lateralus - (Tool Cover) ft. Samuel Hope and Suphala P.S. The HU - Yuve Yuve Yu

  • «Парижская декларация»

    Год назад группа европейских интеллектуалов первой величины (учёные с мировым и европейским именем в соответствующих областях наук) издала…

promo evan_gcrm march 28, 19:35 75
Buy for 30 tokens
Основополагающим элементом, основным двигателем всей жизни, является репликатор. Скопированная информация - это и есть «репликатор». На Земле первый репликатор довольно бесспорный - это гены, или информация, закодированная в молекулах ДНК. Точнее это первый репликатор, о котором мы знаем.…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments