evan_gcrm (evan_gcrm) wrote,
evan_gcrm
evan_gcrm

Category:

Роль энергии в эволюции

Подглядел у magpie73


В продолжение темы: Физика жизни.

Никто не может сказать, почему жизнь такова, какой мы ее знаем. Вся сложная жизнь на Земле восходит к общему предку. Это был одноклеточный организм, возникший из простых бактериальных предшественников в результате уникального стечения обстоятельств: единственный раз за 4 млрд лет.
Общий предок был уже очень сложной клеткой. В своем совершенстве он был сравним с клетками нашего организма. Для всех сложных форм жизни характерен один и тот же набор проработанных биологических механизмов, от полового размножения до апоптоза (клеточного самоубийства) и старения. Ничего похожего у бактерий не встречается. До сих пор нет единого мнения, почему общий предок всего живого объединил в себе множество этих уникальных черт, а также почему у бактерий нет и намека на независимое возникновение таких признаков.



Этапы развития жизни на Земле. На шкале отражены примерные даты ключевых событий (млрд лет). Многие датировки остаются спорными, но ясно, что бактерии и археи появились на 1,5-2 млрд лет раньше эукариот.

✔️ Первая попытка найти ответ произошла в 1967 году. Линн Маргулис предположила, что сложные клетки появились не в ходе «классического» естественного отбора, они зародились в оргии взаимного ублажения, когда клетки были так близки, что даже проникали друг в друга.
Долговременное сотрудничество нескольких видов называется симбиозом и напоминает обмен товарами и услугами. В случае микроорганизмов товары – это метаболические субстраты, дающие энергию для поддержания жизни клеток.
Линн Маргулис ввела понятие эндосимбиоза – разновидность симбиоза, при котором поддерживающие друг друга клетки находятся внутри клетки хозяина, почти как магазины под крышей одного торгового центра.
Таким образом, эукариотическая клетка произошла в результате целой серии слияний, что в дальнейшем оформилось в виде теории серийных эндосимбиозов.
Не только отдельные клетки, но и весь мир является результатом совместной жизнедеятельности колоссального числа бактерий: так гласит гипотеза Геи Линн Маргулис и Джеймса Лавлока.
Но идея сложной “эукариотической” клетки как бактериального ансамбля не получила большой поддержки. Все-таки большинство клеточных структур не похоже на потомков бактерий, и не найдено никаких генетических признаков, которые бы это подтверждали.

✔️ Второй рывок произошел в 1990 году. Карлу Везе на основе филогенетического анализа удалось разделить бактерии и сложные эукариоты.
Он построил дерево, ветвление которого отражает генетическое родство видов внутри главных групп и родство между группами.
Согласно его гипотезе – каждый из трех предложенных им доменов (археи бактерии и эукариоты) представляет собой огромную, пышно цветущую ветвь эволюционного дерева, эти домены равноправны, и нет причин, чтобы отдавать предпочтение одному из них. Все три домена, уходят корнями в невообразимо далекое прошлое, к загадочному общему предку, из которого они каким-то образом “выкристаллизовались”.


Знаменитое, но неверное трехдоменное дерево жизни.
Схема Карла Везе на основе анализа одного высококонсервативного гена (гена рибосомальной РНК малой субъединицы рибосомы). Местоположение “корня” выявлено анализом расхождений между парами паралогичных генов, общих для всех клеток (которые дуплицировались еще у Последнего всеобщего предка), и оно показывает, что и археи, и эукариоты гораздо ближе друг к другу, чем к бактериям. Но это верно лишь для ключевых информационных генов. Большая доля остальных генов эукариот родственна генам бактерий, а не архей. Так что приведенная схема вводит нас в заблуждение. Ее можно рассматривать исключительно как филогенетическое дерево одного гена, но не как дерево жизни.


✔️ Третий этап все еще продолжается. Он вырос из двух предыдущих. Дерево, построенное Везе, отражает расхождение одного фундаментально важного гена в трех доменах. Согласно гипотезе Маргулис, происходило обратное: гены разных организмов сходились в ходе эндосимбиотических слияний и поглощений. Если попытаться отобразить этот процесс на древе, мы получим срастание ветвей – противоположность тому, что утверждал Везе. Эти гипотезы не могут быть одновременно верными, и ни одна из них не является полностью ошибочной. Истина, как часто бывает в науке, лежит посередине. Но не думайте, что это означает некий компромисс: настоящая картина гораздо удивительней того, что предлагают обе гипотезы.


Удивительное дерево с исчезающими ветвями.
На рисунке результат сравнения филогенетических схем, построенных для 50 бактерий и 50 архей по 48 универсальным и консервативным генам. Последовательности 48 генов были слиты в одну для увеличения статистической мощности (это обычный метод в филогенетике). По последовательности “супергена” построено дерево, демонстрирующее родственные связи внутри 100 видов. Построили деревья по каждому гену и каждое сравнили с “супергенным”. Для каждой ветви градиентом серого указано число деревьев, построенных по отдельным генам, которые совпадают с деревом, построенным по слитой последовательности. У основания дерева почти все 48 генов выдают то же дерево, что и слитая последовательность, указывая, что бактерии и археи действительно разошлись очень давно. На кончиках ветвей большинство деревьев, построенных по отдельным генам, также совпадают с деревом, построенным по слитой последовательности. Но мы не видим более глубоких ветвей внутри обеих групп: все построенные по отдельным генам деревья имеют иной порядок ветвления, нежели дерево, построенное по слитой последовательности. Это может быть и следствием горизонтального переноса генов, который перетасовал все точки ветвления, и размытием статистического сигнала за невообразимо долгие четыре миллиарда лет.


Сложная жизнь возникла в результате единичного эндосимбиоза архейной клетки-хозяина и бактерии, которая впоследствии стала митохондрией – высказал в 1998 году биолог-эволюционист Билл Мартин.
Мартин предсказал, что сложная жизнь произошла в результате единичного эндосимбиоза лишь двух клеток. Он заявил, что клетка-хозяин была простой археей, без эукариотической сложности; что никогда не существовало промежуточной эукариотической клетки без митохондрий; что приобретение митохондрий и возникновение сложной жизни было одним и тем же событием; что все удивительные особенности сложных клеток (от ядра до полового размножения и фагоцитоза) появились после приобретения митохондрий в том уникальном эндосимбиозе.


Химерное происхождение сложных клеток.
На филогенетическом дереве, построенном в 1998 году Биллом Мартином по результатам полногеномного анализа, изображены три домена: бактерии, археи и эукариоты. Эукариоты имеют химерное происхождение: гены архейной клетки-хозяина смешались с генами эндосимбионта. В конечном счете архейная клетка превратилась в эукариотическую с присущей той сложной морфологией, а ее эндосимбионт – в митохондрию. Позднее одна из ветвей эукариот приобрела второго эндосимбионта, который дал начало хлоропластам водорослей и высших растений.


Итак, мы вернулись к тому, с чего начали.

Нам известно, что сложные клетки за 4 млрд лет эволюции возникли лишь однажды – в результате единичного эндосимбиоза археи и бактерии. Мы знаем, что вследствие этого возникли характерные черты сложных организмов, но по-прежнему непонятно, почему у бактерий и архей они отсутствуют даже в зачаточном состоянии. Неизвестно, что сдерживает бактерий и архей, почему они сохраняют простую морфологию при исключительном биохимическом и генетическом разнообразии и удивительной способности питаться всем, чем угодно, включая камни и нефть.

✔️ Ключ к разгадке этой тайны скрывается в причудливом механизме, посредством которого клетка производит энергию.
Этот механизм накладывает на клетку множество ограничений, роль которых пока не оценена по достоинству. Почти все клетки для жизнеобеспечения используют энергию потока протонов (положительно заряженных атомов водорода).
Это аналогично электрическому току, но в качестве заряженных частиц выступают протоны. Энергия, которую мы извлекаем из пищи, сжигая ее в процессе дыхания, расходуется на перекачку протонов через мембрану, и в результате они накапливаются с одной стороны и создают своего рода напор. Проходя обратно сквозь мембрану, поток протонов поставляет энергию для поддержания жизни клетки – подобно тому, как поток воды, вращая турбины, обеспечивает энергией гидроэлектростанцию.

Старинные водяные мельницы и современные гидроэлектростанции работают благодаря направленному движению потоков воды. Если перегородить реку плотиной и оставить в ней небольшое отверстие, напор воды будет гораздо мощнее и его хватит, чтобы крутить мельничное колесо. А если позволить потоку течь по широкому руслу, напор уменьшится.
Клетки живых организмов работают по тому же принципу.
Метаболический путь можно сравнить с руслом, по которому “течет” углерод.
В метаболическом пути последовательность химических реакций катализируется рядом поочередно действующих ферментов. Продукт реакции, катализируемой первым ферментом, является субстратом для второго, и т. д. Ферменты служат как бы берегами, в которых течет углерод, и направляют его ход. Органическая молекула входит в метаболический путь, подвергается ряду химических превращений и выходит уже в виде другой молекулы. Последовательность реакций метаболического пути надежно воспроизводится раз за разом, и исходные вещества и продукты однозначно соответствуют друг другу. В клетке одновременно функционирует множество метаболических путей.
Это похоже на сеть взаимосвязанных водяных мельниц, где вода всегда с максимальным напором течет по пересекающимся каналам. Благодаря оптимальному распределению потока для роста клеток требуется гораздо меньше углерода и энергии, чем если бы поток не был ограничен. Вместо того чтобы беспорядочно участвовать в реакциях и на каждом шагу терять энергию, молекулы проходят определенный путь превращений – благодаря работе ферментов. Клеткам не нужна река, бегущая к морю: для работы их “мельниц” достаточно маленьких струек.
С точки зрения энергетики, мощь ферментов заключается не столько в том, что они ускоряют реакции, сколько в том, что они делают это специфично, максимизируя выход.

Клетки современных организмов минимизируют свои энергетические запросы, но мы знаем, что им до сих пор приходится использовать колоссальные объемы АТФ – имеющей повсеместное хождение энергетической “валюты”. Даже самые простые клетки, которые получают энергию, осуществляя реакцию водорода с углекислым газом, производят в процессе дыхания в 40 раз больше отходов, нежели полезной биомассы. То есть чтобы получился 1 г новой биомассы, должно образоваться минимум 40 г мусора.

Есть два неожиданных аспекта использования энергии живыми организмами:
Во-первых, клетки получают энергию за счет химических реакций лишь одного типа: окислительно-восстановительных. (Или – редокс-реакций: от англ. reduction – восстановление и oxidation – окисление.) Это просто перенос электронов от донора к акцептору. Когда донор отдает электроны, говорят, что он окисляется.
Про вещество, которое принимает электроны, говорят, что оно восстанавливается.
Все химические реакции в конечном счете повышают температуру среды и уменьшают энергию самой системы. В ходе них выделяется большое количество энергии.
При дыхании часть энергии, выделяющейся в реакции, запасается в форме АТФ, пусть и ненадолго: до тех пор, пока АТФ не распадется снова. Расщепляясь, АТФ отдает в форме тепла оставшуюся энергию, которая заключена в связи АДФ – Фн. По сути, дыхание и горение – это одно и то же, но в пламени все сгорает моментально, а в ходе дыхания – несколько медленней. Эту небольшую задержку мы и называем жизнью.

Последовательность окислительно-восстановительных реакций сводится к путешествию электрона по цепи связанных друг с другом переносчиков. Электроны от питательных веществ переходят на кислород не сразу (как при горении, когда энергия выделяется вся и сразу), а в несколько стадий, прыгая с одного переносчика на другой, будто с кочки на кочку. Обычно “кочками” служат ионы железа (Fe3+), встроенные в белки дыхательной цепи. Как правило, ион железа входит в состав неорганической кристаллической структуры, которая называется железосерным кластером. С одного кластера электрон перепрыгивает на другой, очень похожий, но с чуть более высоким сродством к электрону (более “жадного”). Когда электрон передается от одного кластера к другому, каждый раз сначала происходит восстановление (принимая электрон, Fe3+ восстанавливается до Fe2+), а затем окисление (потеря электрона и обратный переход в Fe3+). Наконец, совершив пятнадцать или больше прыжков, электрон достигает кислорода.

На первый взгляд, у фотосинтеза у растений и дыхания у животных мало общего, однако в главном они совпадают. В основе обоих процессов лежит перенос электрона по “дыхательным цепям”.

Второй неожиданный аспект использования энергии живыми организмами – это хитроумный механизм хранения энергии в химических связях АТФ. Живые организмы синтезируют АТФ не непосредственно, а путем создания протонных градиентов на тонких мембранах.

До сих пор ничего не известно о том, как возник биологический механизм генерации энергии. Жизнь, похоже, использует поразительно ограниченный и довольно странный набор из всех возможных энергетических механизмов.
эти способы настолько лучше прочих, что в конце концов лишь они остались в употреблении?
мы имеем дело с единственным возможным вариантом?


Клетка, живущая за счет природного протонного градиента.
В центре изображена клетка с проницаемой для протонов мембраной. Клетка втиснута в расщелину в неорганическом барьере, который внутри микропористого источника разделяет две фазы жидкостей. Верхняя фаза – это слабокислая океанская вода с pH = 5–7 (в рамках этой модели ее pH принят за 7), которая просачивается внутрь глубокой поры. В нижнюю фазу входят щелочные гидротермальные жидкости, которые просачиваются из одной поры в другую через соединительные каналы (их pH примерно 10). Ламинарное течение предполагает отсутствие турбулентных завихрений и смешивания, характерных для жидкостей, протекающих сквозь небольшие ограниченные пространства. Протоны (H+) могут проходить прямо сквозь липидную мембрану или через встроенные в нее белки (на рисунке обозначены треугольной фигурой) по градиенту концентрации протонов, меняющемуся от кислой воды океана до щелочных гидротермальных потоков. Гидроксид-ионы (OH–) текут в противоположном направлении, из гидротермальных жидкостей в океанскую воду, но исключительно через мембрану. Интенсивность потока протонов зависит от проницаемости мембраны для H+, нейтрализации OH–(с образованием H2O), количества мембранных белков, размера клетки и заряда на мембране, накопленного в результате перемещения ионов из одной фазы в другую.


Почему все живое на планете использует окислительно-восстановительные процессы?
Этот вопрос, наверное, из самых простых. Все известные живые организмы сложены в основном из углерода, причем в частично восстановленной форме. Кстати, термин “частично восстановленная форма” означает, что углерод в ней восстановлен в меньшей степени, чем в метане.

Я не могу рассматривать организм вне среды его обитания… Формально организм и среду обитания можно рассматривать как две равнозначные фазы, динамический контакт между которыми поддерживается мембранами, разграничивающими и связывающими их.
/Питер Митчелл/

Вся жизнь на Земле хемиосмотична. Все организмы используют энергию протонных градиентов на мембранах, чтобы осуществлять углеродный и энергетический метаболизм.

Жизнь и энергия с самого начала были взаимосвязаны и что все фундаментальные свойства жизни есть следствие неравновесных процессов на нашей неспокойной планете;
Для поддержания жизни нужна непрестанно действующая движущая сила – непрекращающаяся химическая реакция, в результате которой образуются активные промежуточные соединения, например АТФ, и побочные продукты. Такие молекулы обеспечивают осуществление энергоемких реакций, которые позволяют клеткам существовать. Необходим постоянный интенсивный поток углерода и доступной для использования энергии через минеральные катализаторы – поток, направляемый при помощи природной системы микрокомпартментов, которая предоставляет возможность концентрировать продукты и вымывать отходы.
Список необходимого для жизни в источниках состоит лишь из трех пунктов: оливин, вода и CO2 (широко распространенные во Вселенной вещества).


Жизнь появилась благодаря потоку энергии, а использование протонного градиента сыграло центральную роль в появлении клеток и наложило структурные ограничения на бактерий и архей;
Протонные градиенты на тонких полупроводниковых минеральных перегородках теоретически могли запустить образование органических веществ и, в конечном счете, привести к возникновению клеток внутри пор гидротермальных источников. Если это действительно так, то жизнь с самого начала была зависима от протонных градиентов (и железосерных минералов), необходимых для того, чтобы преодолеть кинетический барьер реакции между H2 и CO2.

Ограничения, определившие дальнейшую эволюцию клеток, обрекли бактерий и архей на морфологическую простоту, несмотря на все их биохимические ухищрения;
Хемиосмотические сопряжение предоставляет живым организмам неограниченное многообразие метаболических путей, благодаря чему клетки могут “питаться” и “дышать” почти чем угодно. Так же, как гены (из-за универсальности генетического кода) могут в ходе горизонтального переноса передаваться от одной клетки к другой, инструментарий для приспособления метаболизма к радикально различным условиям может передаваться сходным образом, так как все клетки пользуются одной “операционной системой”.

Чтобы существовать, используя естественные протонные градиенты, древнейшим клеткам требовались проницаемые мембраны, которые бы позволяли удерживать внутри необходимые молекулы и при этом не лишать себя живительного потока протонов. Поэтому у них остался лишь один способ покинуть источник: путем прохождения определенных событий с четкой последовательностью (необходимость антипортера), в результате чего стала возможной коэволюция активного транспорта ионов и современных фосфолипидных мембран.
Лишь тогда клетки смогли покинуть источники и заселить океаны и скалы Земли.


Эта четкая последовательность событий может объяснить парадоксальные свойства Последнего всеобщего предка, как и глубокие различия бактерий и архей.
Кроме того, эти жесткие требования могут объяснить, почему вся жизнь на Земле хемиосмотична: почему это странное свойство распространено столь же широко, как генетический код.


Лишь такое редчайшее событие, как эндосимбиоз, в результате которого бактерия попала внутрь археи, позволило обойти эти ограничения и открыло путь к развитию клеток невообразимой сложности;
У всех эукариот был общий предок, возникший лишь однажды в результате эндосимбиоза прокариот. Одна бактерия поселила у себя внутри другую, не фагоцитируя ее.
Существование многих черт, характерных для эукариот – от ядра до полового размножения, – можно вывести из общих закономерностей.
Возникновение двух полов, разделение на зародышевую линию и соматические клетки, запрограммированная клеточная смерть, мозаичные митохондрии, баланс между аэробной эффективностью и плодовитостью, приспособляемостью и болезненностью, старение и смерть: все эти особенности закономерно развились из стартовой точки – клетка внутри другой клетки.


Тесные взаимоотношения дались клетке и ее эндосимбионту совсем не просто, и поэтому сложные организмы возникли лишь однажды;
Первые эукариоты, скорее всего, быстро эволюционировали внутри маленьких популяций. Уже тот факт, что общий предок эукариот должен был обладать столькими свойствами, ни одно из которых не встречается у бактерий, говорит о том, что это должна была быть маленькая, нестабильная популяция, которая размножалась половым путем.

Не существует встроенной закономерности естественного отбора, которая бы обеспечивала возникновение человека или какой-либо другой сложной формы жизни. Гораздо выше вероятность так и застрять на бактериальном уровне сложности.
Статистика неутешительная.
По энергетическим причинам для развития сложной жизни необходим эндосимбиоз двух прокариот, а это редкое событие, пугающе близкое к случайности. Ситуацию усложняет и то, что между хозяином и эндосимбионтом непременно должен возникнуть эгоистический конфликт.


Характер этих взаимоотношений позволяет предсказать появление некоторых признаков сложных клеток (наличие ядра, полового размножения, существование двух полов и разделение клеток организма на “бессмертные” клетки зародышевой линии и “бренные” соматические, что означает появление генетически предопределенной смерти);
Движение электронов и протонов поддерживает вашу жизнь с тех самых пор, как вы зародились в материнской утробе: ежесекундно – постоянно, безостановочно – вы перекачиваете через мембраны 1021 протонов. Ваши митохондрии перешли от матери, через ее яйцеклетку, и это был самый чудесный ее дар – дар жизни.
Он хрупок: например, цианид остановит ток электронов и протонов, и ваша жизнь быстро прекратится. Старение приведет к тому же исходу – но медленно, постепенно.
Смерть – это прекращение движения электронов и протонов, исчезновение потенциала на мембране.
Смерть – это миг, когда гаснет один из огоньков вечного пламени. Если жизнь – “лишь электрон, который ищет покоя”, то смерть – момент, когда он его обретает.



На картинке красной линией показано место, где примерно искать Homo Sapiens.

"Дерево жизни".

Все живое должно жить, чтобы оставаться живым.

Чтобы жить, требуется непрерывный поток энергии. Неудивительно, что именно поток энергии ставит главные ограничения на пути эволюции, определяя, что возможно, а что нет. Неудивительно, что бактерии продолжают делать то, что обычно, не в силах ощутимо повлиять на горение пламени, благодаря которому они растут, делятся, конкурируют друг с другом. Неудивительно, что единственный удавшийся случай – единичный эндосимбиоз прокариот – не затронул пламя, не повредил ему, а зажег множество искр – которые затеплились в каждой эукариотической клетке, а потом и во всех сложных формах жизни.

Неудивительно, что поддержание пламени жизненно важно. Оно необходимо для нашей физиологии и эволюции, его существованием можно объяснить многие странности нашего прошлого и черты современной жизни. Как нам повезло, что наш ум – самая невероятная биологическая машина во Вселенной – теперь служит проводником для этого бесконечного потока энергии, и благодаря этому мы можем думать о том, почему жизнь такова, какова она есть.

Да пребудет с вами протон-движущая сила!

/Ник Лейн | "Вопрос жизни. Энергия, эволюция и происхождение сложности"/



Введение в биологию (начало)
Введение в биологию. Часть №1
Введение в биологию. Часть №2
Введение в биологию. Часть №3
Введение в биологию. Часть №4
Введение в биологию. Часть №5
Введение в биологию. Часть №6
Введение в биологию. Часть №7
Введение в биологию. Часть №8
Введение в биологию. Часть №9




Tags: Мироустройство, Наука
Subscribe

  • Осязаемая неопределенность

    «Материал, присутствующий в виде следов памяти, подвергается время от времени перестановке в соответствии с новыми обстоятельствами —…

  • Механизм разума

    С большой вероятностью прорыв в понимании механизма машинного разума, проливает свет и на разум человеческий! В работе "Towards Monosemanticity:…

  • Еще одна теория СОЗНАНИЯ

    В исследовании “Consciousness” as a Fusion of the Global Neuronal Network (GNW) Hypothesis and the Tripartite Mechanism of Memory" представляют…

promo evan_gcrm march 28, 2018 19:35 141
Buy for 30 tokens
Основополагающим элементом, основным двигателем всей жизни, является репликатор. Скопированная информация - это и есть «репликатор». На Земле первый репликатор довольно бесспорный - это гены, или информация, закодированная в молекулах ДНК. Точнее это первый репликатор, о котором мы знаем.…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 27 comments

  • Осязаемая неопределенность

    «Материал, присутствующий в виде следов памяти, подвергается время от времени перестановке в соответствии с новыми обстоятельствами —…

  • Механизм разума

    С большой вероятностью прорыв в понимании механизма машинного разума, проливает свет и на разум человеческий! В работе "Towards Monosemanticity:…

  • Еще одна теория СОЗНАНИЯ

    В исследовании “Consciousness” as a Fusion of the Global Neuronal Network (GNW) Hypothesis and the Tripartite Mechanism of Memory" представляют…